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ABSTRACT

We present a novel framework for language-driven
guadrotor navigation and object detection, targeting
real-time deployment on edge platforms. This
poster presents a proof-of-concept system and
outlines a roadmap toward fully onboard, language-
guided autonomy.

Ultimate Goal:

Develop fully integrated, language-driven
autonomous systems for quadrotors, with real-time
onboard LLM inference on embedded platforms.

Key Challenges:

v Bridging natural language understanding with low-
level robotic control and perception.

v’ Meeting stringent compute, latency, and power
constraints for real-time inference onboard small
drones.

v  Ensuring closed-loop performance in realistic,
dynamic environments.
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The ModalAl Seeker uses the VOXL CAM engine
for VIO, onboard object detection, and path
planning

v Tracking camera: VIO localization by capturing
motion data

v Stereo cameras: depth mapping for obstacle
detection and navigation

v Depth sensor: indoor depth perception

v' VOXL flight controller: PX4 and ModalAl’s flight
core for agile maneuvers and robustness
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KEY CONTRIBUTIONS

LoRA Fine-Tuning of Llama Model: Fine-tuned
Llama model with LoRA for quadrotor exploration
and object localization/identification.

Hierarchical LLM Integration: Built a hierarchical
LLM framework Integrating human instructions with
path planning, VIO control, and onboard object
detection..

ModalAl Seeker Testbed: Created a proof-of-
concept testbed using the ModalAl Seeker platform
to validate the proposed approach
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v Fine tune a 1B-parameter LLaMA model using 4,500

prompt examples and ~3.5% of parameters via LORA.

v' LLM translates natural language into task-level goals
for onboard execution.

v' Onboard stack performs trajectory generation and
tracking via VIO-based control, with real-time object
detection using MobileNetV2.
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FPS: 18.4, Inference: 53.0 [msa] ' FPS: 24.9, Inference: 38.8 [ms]

Real Time Object Detection:
* Detection rate is up to ~25 FPS

= « Objects are localized and
detected successfully.

FUTURE WORK

v Onboard LLM Inference: Apply model compression techniques such as
activation-aware guantization and knowledge distillation to deploy LLMs on
resource-limited embedded platforms.

v’ Multimodal Input Integration: Extend the interface to support spoken
language commands, enabling natural voice-based control via audio-to-text
pipelines or direct audio-conditioned LLMSs.

v' Grounded Vision-Language Reasoning: Fuse visual context from onboard
cameras with language inputs to enable contextual understanding and
dynamic task execution in complex environments.
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